M. tuberculosis σ^E Protects against Environmental Stress, Immune Responses

σ^E master regulator is important for virulence and for responding to environmental stresses, many of which affect the bacterial cell envelope.

By Patricia A. Fontán and Issar Smith

Bacterial sigma (\(\sigma\)) factors bind to RNA polymerase and provide this enzyme with specificity for particular promoters. This interaction generates a mechanism for regulating gene expression. Thus, different \(\sigma\) factors bind to RNA polymerase, allowing different groups of genes to be expressed in response to changing conditions.

More specifically, \(\sigma\) factors within the extracytoplasmic function (ECF) class regulate genes that allow microorganisms to respond to environmental changes. In some cases, genes controlled by ECF \(\sigma\) factors are involved in bacterial virulence. Mycobacterium tuberculosis (Mtbc) carries 13 \(\sigma\) factor genes, including 10 of the ECF \(\sigma\) subgroup, reflecting the versatility of this microorganism to adapt to many types of stress and to succeed as a pathogen. Our research group and others are studying the role of \(\sigma^E\), one of the Mtbc ECF \(\sigma\) factors, in mycobacterial physiology and virulence. The \(\sigma^E\) regulon is activated during macrophage infection, and the Mtbc components that are produced exert global effects on host responses, as well as within epistatic pathways by which \(\sigma^E\) is regulated.

The \(\sigma^E\) Regulon during M. tuberculosis In Vitro Growth and in Macrophages

The Mtbc ECF \(\sigma^E\) is a master regulator that is important for virulence and for responding to environmental stresses, many of which affect bacterial cell envelopes. Although other Mtbc \(\sigma\) factors, including \(\sigma^F\) and the ECF \(\sigma\) factors \(\sigma^E\) and \(\sigma^L\), control expression of cell envelope components, only \(\sigma^E\) is essential for this microorganism to survive in macrophages and for its maximal growth in mouse lungs. The \(\text{sigE}\) mutant strain, in addition to being attenuated, is sensitive to several membrane-disrupting agents, including the detergent sodium dodecyl sulfate (SDS), the cationic peptide polymyxin B, and the protonophore carbonyl cyanide chlorophenylhydrazone (CCCP).

SDS induces expression of several Mtbc genes in a \(\sigma^E\)-dependent manner. One of them encodes a putative PspA protein (Rv2744c), which is also induced during macrophage infection, and this upregulation requires \(\sigma^E\) (see table). In Escherichia coli, membrane-damaging agents as well as defects in secretion induce PspA. This protein protects bacteria from the action of cationic peptides and CCCP by restoring electron transport. The decreased expression of PspA in the Mtbc \(\text{sigE}\) mutant may be the cause of its increased sensitivity to polymyxin B and CCCP.

In addition, \(\sigma^E\) controls the expression of several genes encoding regulatory proteins.

Summary

- \(M.\ \text{tuberculosis}\ \sigma^E\) regulates expression of several bacterial components, including those that maintain the cell envelope and several genes encoding regulatory proteins.
- \(\sigma^E\) is important for \(M.\ \text{tuberculosis}\) to suppress host immune responses and to survive in host macrophages.
- Several components of the \(\sigma^E\) regulon downmodulate the host innate immune response.
such as \(\text{sigB} \), which encodes \(\sigma^B \), a general stress sigma factor that is very similar to \(\sigma^A \), the major housekeeping mycobacterial sigma factor. \(\sigma^E \) also controls the expression of \(\text{tatA} \), which codes for one of the proteins of the Sec-independent TAT system of secretion. In gram-negative bacteria, this secretion system is an important virulence factor. The components of the TAT system are also essential in \(M. tuberculosis \). Moreover, a mutant whose gene encoding a substrate for the TAT system is disrupted is no longer virulent.

Transcriptional profile analysis of \(M. tuberculosis \) wild type and \(\text{sigE} \) mutant strains during infection of macrophages reveals that \(\sigma^E \) regulates genes encoding several distinct classes of proteins, including some that are annotated to be involved in making galactofuran that is essential for linking peptidoglycan and mycolic acid, making mycolic acids, metabolizing and detoxifying fatty acids; some that are annotated as encoding endopeptidases, amidohydrolases, oxidoreductases, oxidases; and trans-membrane proteins (see table). These observations suggest that \(M. tuberculosis \) \(\sigma^E \) helps to control expression of bacterial components that are involved in maintaining cell envelope integrity, transporting substances across the cell membrane, and detoxifying cells.

The \(\sigma^E \) Regulon Dampens Host Immune Responses

The importance of \(\sigma^E \) in the \(Mtb \) response to cell envelope stress and in its ability to grow in macrophages suggests that this sigma factor controls events that may occur early during the establishment of infection. It is at this time that the host immune system becomes activated and ultimately results in the formation of a granuloma that controls bacterial dissemination.

However, \(Mtb \) has evolved mechanisms to evade the antibacterial immunological mechanisms of the infected host. For example, the cell envelope phenolic-glycolipid PGL-Tb down regulates the host Th1 innate immune response. Also, the mannose-capped, lipoarabinomannan (ManLAM) cell-surface component exerts a strong immunosuppressive effect.

Similarly, we postulate that \(\sigma^E \) regulates many factors that play a role in the interactions between \(M. tuberculosis \) and its hosts, including several that directly affect host immune responses. To provide evidence for this hypothesis, we compared the transcriptional
response of human and murine macrophages infected with wild-type M. tuberculosis H37Rv and the sigE mutant. At the same time we also analyzed the transcriptome of these two bacterial strains during macrophage infections. Our results indicate that components of the σ^E regulon down-modulate the host innate immune response.

Specifically, the sigE mutant up-regulates several genes in macrophages that it infects compared with macrophages that the wild-type M. tuberculosis infects. The macrophage components encoded by these genes are part of the common, or innate immune, defense program that the host elicits immediately after being infected by many pathogens (Fig. 1). In particular, the sigE mutant up-regulates genes encoding proteins of the acute-phase innate immune response, the toll-like receptors TLR1 and TLR2, pro-inflammatory cytokines and chemokines, and defensins and prostoglandins.

The lipid bodies that characterize foamy macrophage in mouse lungs infected with BCG are particularly rich in prostaglandins. When mouse lungs are infected with the sigE mutant, numbers of foamy macrophages increase. Other experiments have shown that when dendritic cells are infected with the sigE mutant, interleukin (IL)-10 increases while production of the chemokine CXCL10 is reduced. Overall, these changes may limit migration of lymphocytes and reduce tissue damage. Also, increased IL-10 may boost production of interferon (INF)-γ, which is bacteriostatic.

Regulation of σ^E Synthesis and Function

The ECF sigma factors are regulated at several levels. For instance, several environmental conditions induce M. tuberculosis sigE expression. Moreover, two genes, one encoding a putative serine protease (htrA) and the other a putative anti-sigma factor (rseA), are found downstream of sigE, suggesting posttranscriptional regulation. In fact, purified RseA specifically binds to σ^E, preventing its function in transcription.

Expression of the gene encoding RelA, a ppGpp synthase, partially depends on σ^E in Mycobacterium smegmatis, a nonpathogenic relative of M. tuberculosis. This dependence requires the MprAB two-component system, whose expression, in turn, depends on a functional polyphosphate kinase (PPK1). Thus, σ^E in M. smegmatis may regulate the alarmone ppGpp, which is part of the stringent response to starvation.

M. tuberculosis appears to encode a similar regulatory pathway. Thus, for example, de-
Increasing the levels of PPK1 in *M. tuberculosis* by antisense technology reduces expression of *mprAB, sigE, and relA*. Moreover, MprAB controls the expression of *sigE* as well as *sigB* in *M. tuberculosis*. However, RelA cannot be responsible for the *sigE* mutant phenotypes since a *relA* mutant is not attenuated during macrophage infection and it survives less well than does the *sigE* mutant during the chronic phase of the mouse lung infection. Moreover, there is no experimental evidence that *σ^E* regulates expression of *relA*.

In *E. coli*, ppGpp regulates expression of *sigE* in an RseA-independent way as cells enter stationary phase. Thus, *σ^E* can respond to intracellular signals in addition to responding to cell envelope stress. This regulation might enable *E. coli* to change the cell envelope in response to stress induced during stationary phase.

However, in *M. smegmatis*, ppGpp does not regulate the expression of *sigE*. Although *sigE* expression increases when *M. smegmatis* cells enter stationary phase, the same does not occur in *M. tuberculosis*. Whether ppGpp regulates the expression and activity of *Mtb* sigma factors remains to be determined. When *M. tuberculosis* cells are starved, they induce expression of *sigE, sigB, sigF*, and *sigD*, whereas for *relA* mutants expression of only *sigD* is affected. Moreover, strains with deletions in these regulators do not show an attenuated growth phenotype during chronic infection as do *relA* mutants.

Role of *σ^E* during Later Stages of Infection

During a chronic infection, *M. tuberculosis* may modify its cell envelope. Thus, *σ^E* may be relevant for *M. tuberculosis*’s entrance to a persistence state. Although *σ^E* plays no apparent major role in *M. tuberculosis* survival during persistence, this protein might be necessary at several other stages of infection when *σ^K* and other sigma factors may amplify or sustain its signal (Fig. 2). A conditional gene silencing system that shuts down *sigE* expression at various times during *M. tuberculosis* infection could help in determining the role, if any, of *σ^E* during chronic infections and the hierarchical roles of transcriptional...
components in the regulatory network that enables *M. tuberculosis* to survive in its host.

\(\sigma^E \) regulation is complex, and only partly understood (Fig. 2). For example, little is known about the circuitry by which Pkk1 is activated to synthesize polyphosphate and the way in which this compound interacts with the MprAB two-component system. What prevents the anti-sigma factor RseA from binding to \(\sigma^E \) and inhibiting its function is also not understood.

Such information could help in developing new antitubercular therapies. Because the *M. tuberculosis sigE* mutant strain stimulates the host immune system during macrophage infections, that mutant might be evaluated for use as a vaccine strain and whether it can protect against a subsequent virulent *M. tuberculosis* challenge.

ACKNOWLEDGMENTS

We thank Virginie Aris for creating Fig. 1, Eugenie Dubnau for reading and discussing this article, and Yvegeniy Senin for technical assistance. Financial support: NIH grants (RO1) AI-44856 and (RO1) HL-68513 (awarded to I.S.), CFAR grant (NYU Medical Center) 26X1500 73390 12680 (awarded to P.A.F.).

SUGGESTED READING

He, H., R. Hovey, J. Kane, V. Singh, and T. C. Zahrt. 2006. MprAB is a stress-responsive two-component system that directly regulates expression of sigma factors SigB and SigE in *Mycobacterium tuberculosis*. J. Bacteriol. 188:2134–2143.

